

# **Ricardo-AEA**

### **Road Transport and Air Quality**

Guy Hitchcock

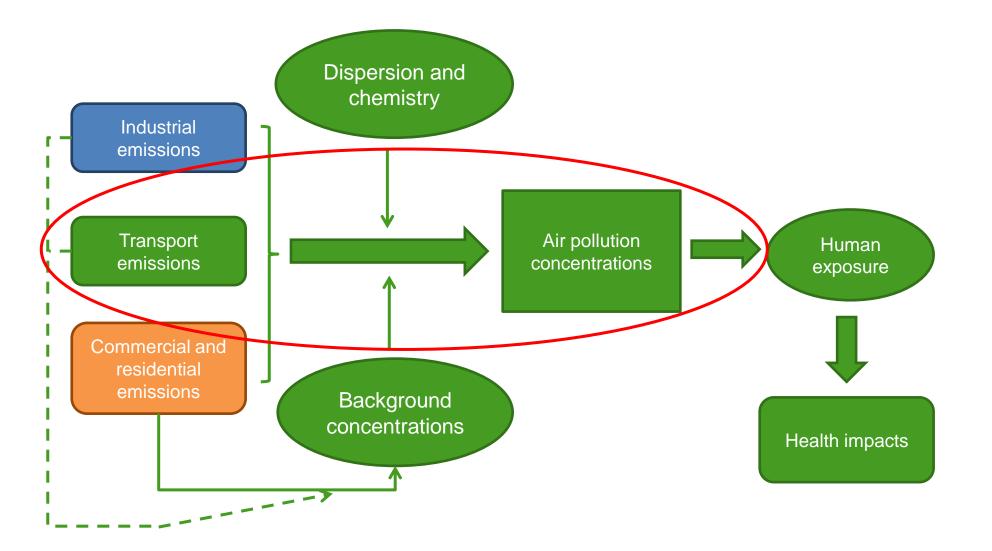
**Transport Planning Society 21st Jan 2015** 

www.ricardo-aea.com

© Ricardo-AEA Ltd

"There are still major challenges to human health from poor air quality. We are still far from our objective to achieve levels of air quality that do not give rise to significant negative impacts on human health and the environment."

Janez Potočnik, European Commissioner for the Environment (Potočnik, 2013)


### **Overview of Air Quality Legislation**

- European Air Quality Directive and health based air quality standards
  - Compliance assessed at the national level
  - No direct exposure relationship
- National Emission Ceiling Directive
  - Ceiling on national emissions
  - Assessed at the national level
- Local Air Quality Management (LAQM)
  - Same health based standards
  - Link to exposure no exposure, no problem
  - Assessed locally
  - Air Quality Management Areas (AQMA)
  - Air Quality Action Plans (AQAP)

| Pollutant                                       | Averaging period  | Concent              | tration              |  |  |
|-------------------------------------------------|-------------------|----------------------|----------------------|--|--|
|                                                 |                   | EU limit             | WHO guidelines*      |  |  |
| PM <sub>10</sub>                                | 24-hour mean      | 50 µg/m³             | 50 μg/m³             |  |  |
|                                                 | Annual mean       | 40 μg/m <sup>3</sup> | 20 μg/m <sup>3</sup> |  |  |
| PM <sub>2.5</sub>                               | Annual mean       | 25 µg/m³ **          | 10 μg/m³             |  |  |
| Ozone                                           | Daily 8-hour mean | 120 µg/m³            | 100 µg/m³            |  |  |
| Nitrogen dioxide (NO <sub>2</sub> ) Hourly mean |                   | 200 µg/m³            | 200 µg/m³            |  |  |
|                                                 | Annual mean       | 40 μg/m <sup>3</sup> | 40 μg/m <sup>3</sup> |  |  |

### **Emissions, Concentrations and Health impacts**

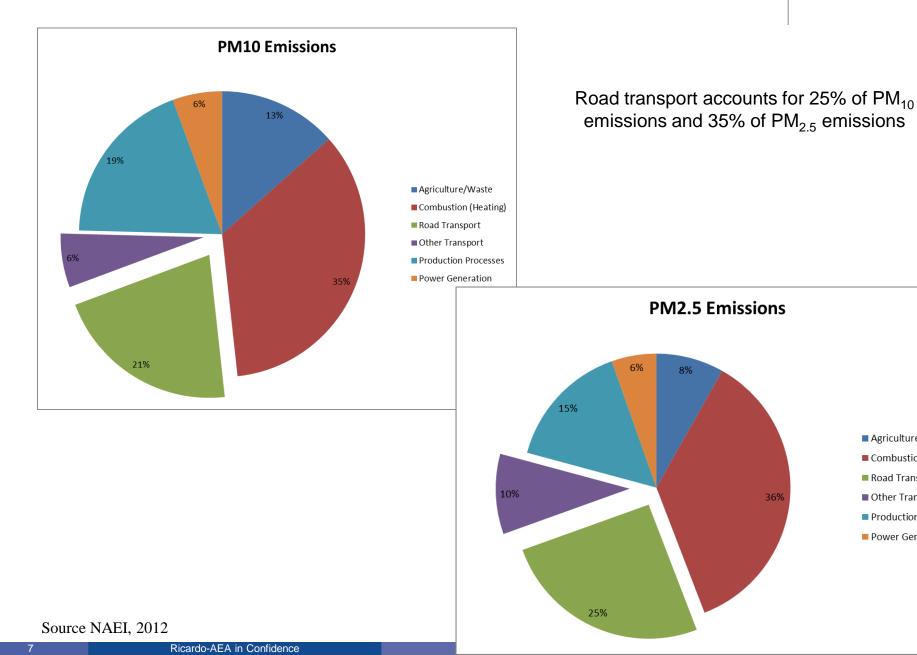
### **RICARDO-AEA**



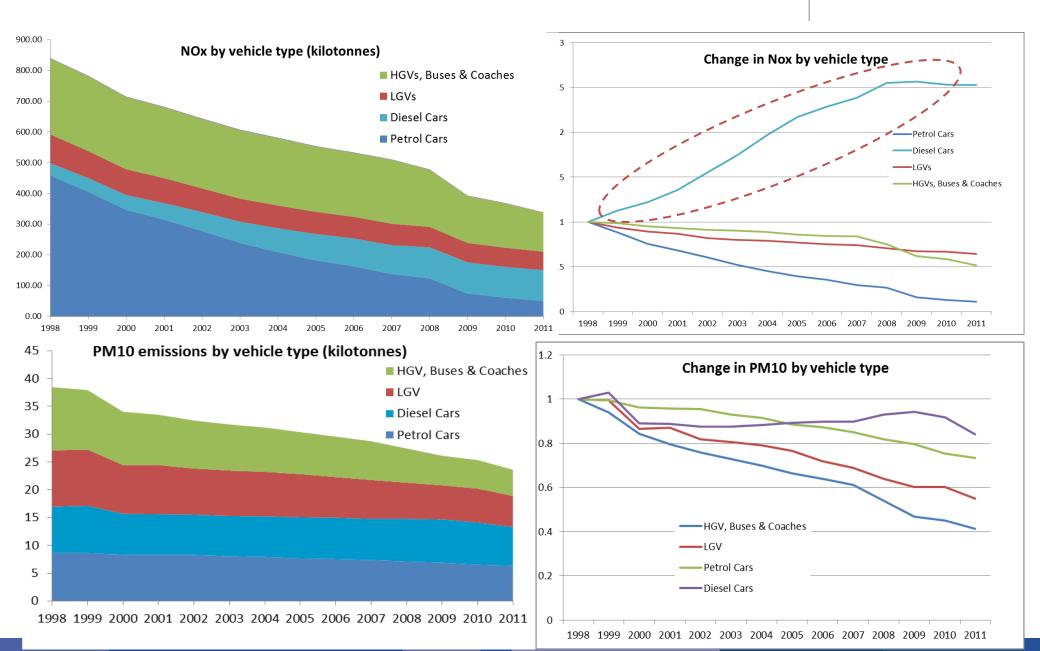
Ricardo-AEA in Confidence

© Ricardo-AEA Ltd

## **National emissions of NOx**


### 1000 —Industrial combustion 900 Road transport accounts for about 1/3 of -Heavy duty vehicles 800 national NOx emissions — Passenger cars Other Transport 700 Production Processes Power generation 600 500 400 300 200 100 23% 0 1970 1976 1978 1986 1996 1998 2000 2006 2008 2010 1972 1974 1980 1982 1984 1988 1990 1992 1994 2002 2004 29% Industrial combustion Heavy duty vehicles 1% Passenger cars Other Transport Production Processes Power generation 20% 12% Source NAEI, 2012 15% **Ricardo-AEA** in Confidence

### **National particulate emissions**


### **RICARDO-AEA**

Agriculture/Waste Combustion (Heating) Road Transport

Other Transport Production Processes Power Generation



### **Trends in Modelled Transport Emissions**



### NO<sub>2</sub> concentrations at roadside

### Average source apportionment for NOx on UK road links exceeding an annual mean of 40 µg m<sup>-3</sup> in 2008 UB Off road mobile machinery UB Other 1% 3% **UBShipping0% UB** Commercial **Residential 8%** LHGVr 11% LHGVa UB Industry 9% 4% L Traffic 60% L Cars 18% L Buses 15% **UBTraffic 17%** L LGVs 7% RB L Motorbikes 0% Transboundary ships 1% **RB** Transboundary \_RB MS 4% EU 2%

Source: 'Air Quality Plans for the achievement of EU air quality limit values for nitrogen oxide (NO2) in the UK', DEFRA, 2011.

## **Transport is the main cause of AQMA's**

Source

| Pollutant               | Objective Declared                    | England | Wales | Scotland | N. Ireland | London | Total |
|-------------------------|---------------------------------------|---------|-------|----------|------------|--------|-------|
| Nitrogen dioxide NO2    | 1-Hour and Annual Mean                | 13      | 6     | 3        | 1          | 7      | 30    |
| Nitrogen dioxide NO2    | 1-Hour Mean                           | 1       |       |          |            |        | 1     |
| Nitrogen dioxide NO2    | Annual Mean                           | 453     | 27    | 19       | 21         | 26     | 546   |
| Nitrogen dioxide NO2    | Interval Not Defined                  | 1       |       |          |            |        | 1     |
| Particulate Matter PM10 | 24-Hour Mean                          | 37      | 1     | 1        | 1          | 24     | 64    |
| Particulate Matter PM10 | Annual and 24-Hour Mean               | 4       |       | 1        | 5          | 5      | 15    |
| Particulate Matter PM10 | Annual Mean                           | 1       |       | 8        | 1          |        | 10    |
| Particulate Matter PM10 | Scotland Annual and 24-Hour Mean      |         |       | 4        |            |        | 4     |
| Particulate Matter PM10 | Scotland Annual Mean                  |         |       | 7        |            |        | 7     |
| Sulphur dioxide SO2     | 15-Minute and 1-Hour and 24-Hour Mean | 2       |       |          |            |        | 2     |
| Sulphur dioxide SO2     | 15-Minute Mean                        | 5       |       | 1        |            |        | 6     |
| Total                   |                                       | 517     | 34    | 44       | 29         | 62     | 686   |

England

Wales

Road transport unspecified County or Unitary Authority Road NO<sub>2</sub> is the main Mixture of road types pollutant of concern Highways Agency Road Transport and Industrial Source and transport is the Transport, Industrial and domestic sources main source Industrial Source Domestic Heating Not Defined Total 

### Total with a transport element

% of total

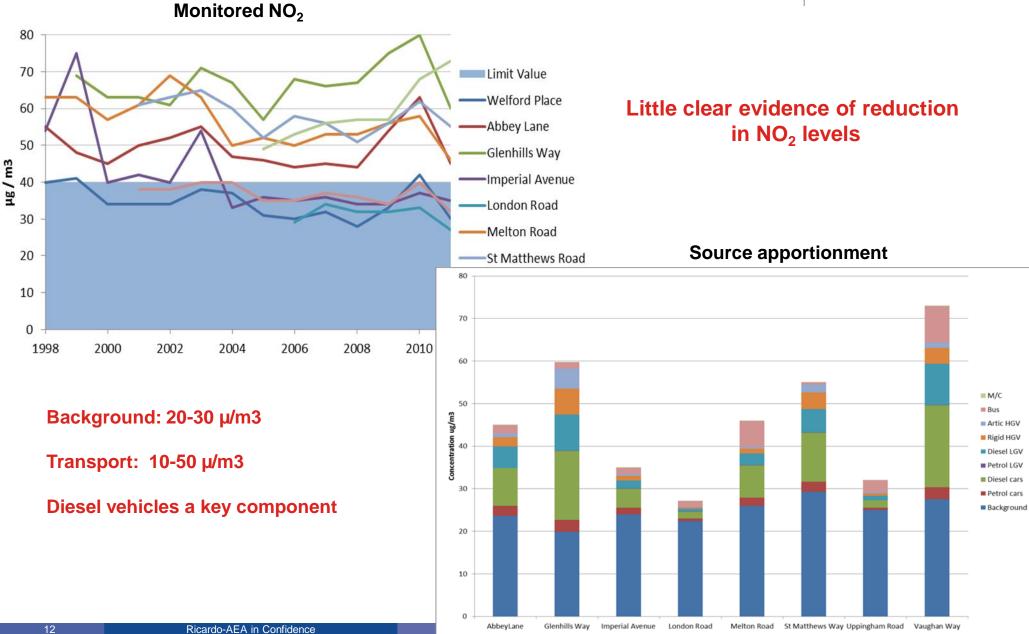
Total

Scotland N. Ireland London

### Local air quality problems

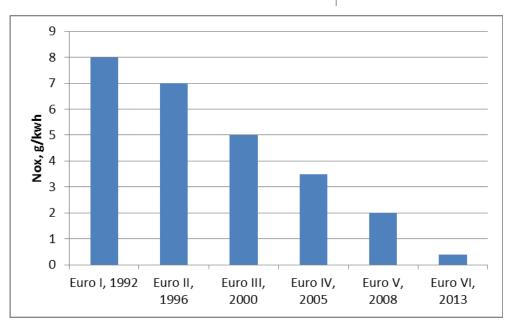
| Pollutant               | Objective Declared                    | England | Wales | Scotland | N. Ireland | London | Total |
|-------------------------|---------------------------------------|---------|-------|----------|------------|--------|-------|
| Nitrogen dioxide NO2    | 1-Hour and Annual Mean                | 13      | 6     | 3        | 1          | 7      | 30    |
| Nitrogen dioxide NO2    | 1-Hour Mean                           | 1       |       |          |            |        | 1     |
| Nitrogen dioxide NO2    | Annual Mean                           | 453     | 27    | 19       | 21         | 26     | 546   |
| Nitrogen dioxide NO2    | Interval Not Defined                  | 1       |       |          |            |        | 1     |
| Particulate Matter PM10 | 24-Hour Mean                          | 37      | 1     | 1        | 1          | 24     | 64    |
| Particulate Matter PM10 | Annual and 24-Hour Mean               | 4       |       | 1        | 5          | 5      | 15    |
| Particulate Matter PM10 | Annual Mean                           | 1       |       | 8        | 1          |        | 10    |
| Particulate Matter PM10 | Scotland Annual and 24-Hour Mean      |         |       | 4        |            |        | 4     |
| Particulate Matter PM10 | Scotland Annual Mean                  |         |       | 7        |            |        | 7     |
| Sulphur dioxide SO2     | 15-Minute and 1-Hour and 24-Hour Mean | 2       |       |          |            |        | 2     |
| Sulphur dioxide SO2     | 15-Minute Mean                        | 5       |       | 1        |            |        | 6     |
| Total                   |                                       | 517     | 34    | 44       | 29         | 62     | 686   |

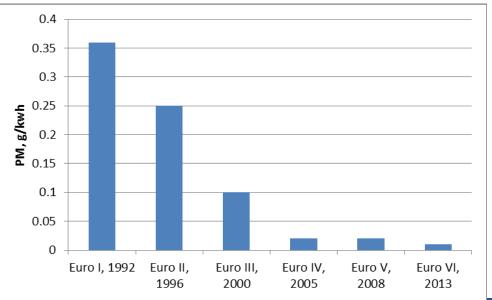
| Source                                     | England | Wales | Scotland | N. Ireland | London | Total |
|--------------------------------------------|---------|-------|----------|------------|--------|-------|
| Road transport unspecified                 | 175     | 12    | 21       | 22         | 26     | 256   |
| County or Unitary Authority Road           | 158     | 16    | 5        |            | 1      | 180   |
| Mixture of road types                      | 79      | 4     | 3        |            | 2      | 88    |
| Highways Agency Road                       | 43      | 1     |          |            |        | 44    |
| Transport and Industrial Source            | 10      |       | 1        |            | 4      | 15    |
| Transport, Industrial and domestic sources | 8       |       |          |            |        | 8     |
| Industrial Source                          | 10      | 1     | 1        |            |        | 12    |
| Domestic Heating                           | 2       |       | 1        | 5          |        | 8     |
| Not Defined                                | 4       |       |          | 2          |        | 6     |
| Total                                      | 489     | 34    | 32       | 29         | 33     | 617   |
| Total with a transport element             |         |       |          |            |        | 591   |
| % of total                                 |         |       |          |            |        | 95.8% |


More than 600 AQMA's

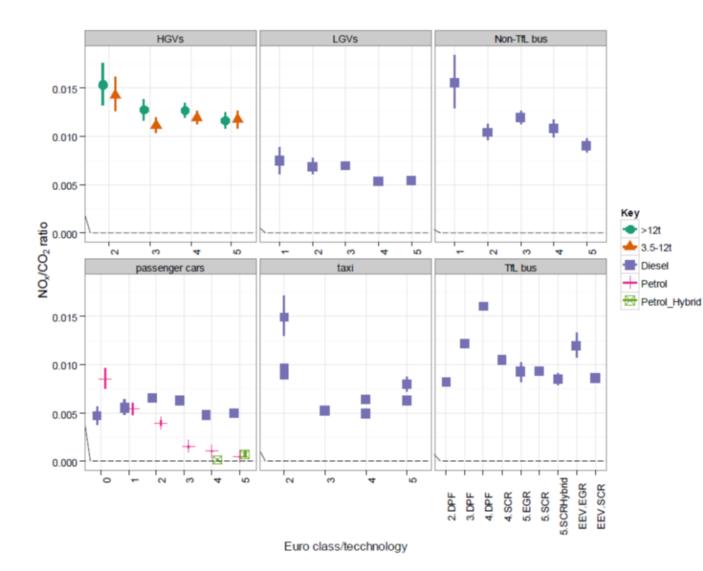
85% relate to NO<sub>2</sub> breaches

**RICARDO-AEA** 


### 95% attributed to transport


### A locally specific problem – Leicester example




### **European Emission standards**

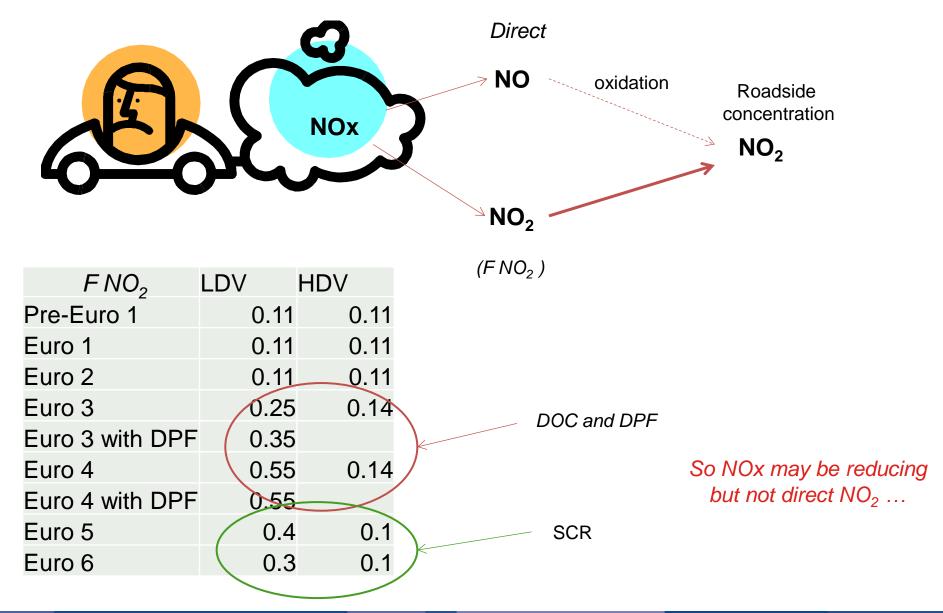
- Emission durability tests
  - Catalyst performance
- On-board diagnostics
  - Better maintenance
- In service compliance
  - PEMS testing





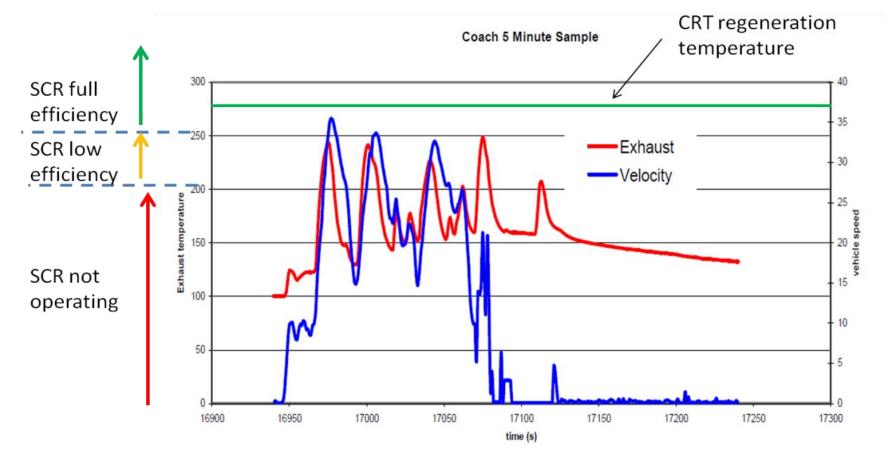
### But are they performing in real-world?




Petrol ✓ Diesel PM ✓

Diesel NOx 🗴

## **Technology and emission standards**


| Standard*              | Light-duty diesel car and van                                                                                            | Heavy-duty bus and truck                                  |  |  |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| Euro 1/I               | Engine and fuel system design (IDI* engines<br>only) – some EGR                                                          | Engine and fuel system design (DI only on heavy-<br>duty) |  |  |  |  |  |
| Euro 2/II              | Engine and fuel system design (now fully<br>electronic), mechanical "on/off" EGR + DOC<br>(mix of IDI and DI** engines)  | Engine and fuel system design                             |  |  |  |  |  |
| Euro 3/III             | Engine and fuel system design, electronic (fine)<br>control EGR + DOC (DI engines only from now<br>on generally on sale) | Engine and fuel system design (now fully electronic)      |  |  |  |  |  |
| Euro 4/IV              | Engine and fuel system design, electronic (fine)<br>control EGR + DOC + DPF (on heavier vehicles)                        | s) or EGR with partial DPF                                |  |  |  |  |  |
| Euro 5/V               | Engine and fuel system design, electronic (fine)<br>control EGR + DOC + DPF                                              |                                                           |  |  |  |  |  |
| Euro 6/VI              | Engine and fuel system design, electronic (fine)<br>control EGR and/or SCR + DOC + DPF<br>EGR both with DPF              |                                                           |  |  |  |  |  |
| Technology definitions |                                                                                                                          |                                                           |  |  |  |  |  |
| IDI, DI                | IDI, DI Indirect injection and direct injection. IDI is less efficient but cheaper                                       |                                                           |  |  |  |  |  |
| DOC                    | Diesel oxidation catalyst – reduces CO and HC, but can increase NO <sub>2</sub>                                          |                                                           |  |  |  |  |  |
| EGR                    | Exhaust gas recirculation – decreases NOx by 30-50%, but can increase fuel use                                           |                                                           |  |  |  |  |  |
| DPF                    |                                                                                                                          |                                                           |  |  |  |  |  |
| SCR                    | Selective catalytic reduction – reduces NOx by 80-90%                                                                    |                                                           |  |  |  |  |  |

### NOx emissions and NO<sub>2</sub>



### Impact of real world driving

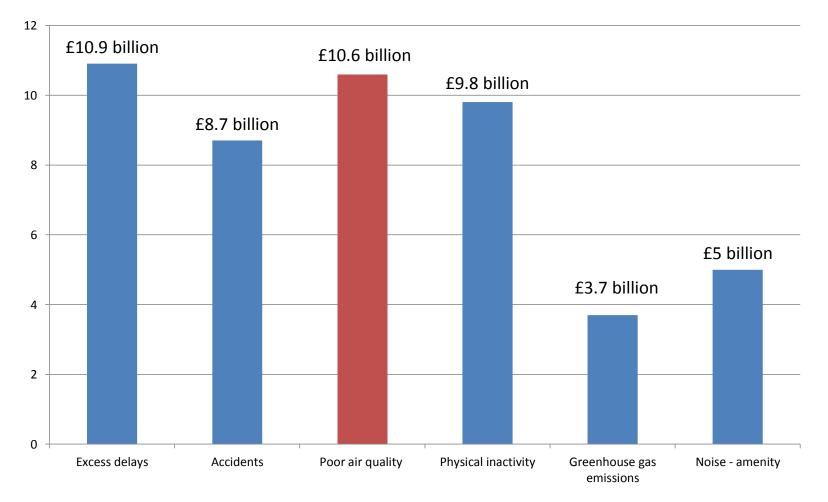




SCR has limited effect and CRT doesn't regenerate

## Health impacts of pollutants

| Pollutants                                 | Quantified health effects                                                                                                                              | Unquantified health effects                                                                        | Other possible effects                                                                                                                      |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Particulate<br>matter / TSP /<br>sulphates | Mortality<br>Chronic and acute bronchitis<br>Minor RAD<br>Chest illness<br>Days of work loss<br>Moderate or worse asthma<br>status                     | Changes in pulmonary function                                                                      | Chronic respiratory<br>diseases other than<br>chronic bronchitis<br>Inflammation of the lung                                                |
| Ozone                                      | Mortality<br>Respiratory RAD<br>Minor RAD<br>Hospital admissions<br>Asthma attacks<br>Changes in pulmonary function<br>Chronic sinusitis and hay fever | Increased airway<br>responsiveness to stimuli<br>Centroacinar fibrosis<br>Inflammation in the lung | Immunologic changes<br>Chronic respiratory<br>diseases<br>Extrapulmonary effects<br>(changes in the structure<br>or function of the organs) |
| Nitrogen<br>oxides                         | Respiratory illness                                                                                                                                    | Increased airway<br>responsiveness                                                                 | Decreased pulmonary<br>function<br>Inflammation of the lung<br>Immunological changes                                                        |


|                             |                      | Sensitivities     |                    |  |  |
|-----------------------------|----------------------|-------------------|--------------------|--|--|
|                             | Central Estimate (1) | Low Central Range | High Central Range |  |  |
|                             |                      | (2)               | (2)                |  |  |
| NOX                         | £955                 | £744              | £1,085             |  |  |
| SOX                         | £1,633               | £1,320            | £1,856             |  |  |
| Ammonia                     | £1,972               | £1,538            | £2,241             |  |  |
| PM domestic                 | £28,140              | £22,033           | £31,978            |  |  |
| PM agriculture              | £9,703               | £7,598            | £11,027            |  |  |
| PM waste                    | £20,862              | £16,335           | £23,708            |  |  |
| PM industry                 | £25,229              | £19,753           | £28,669            |  |  |
| PM ESI                      | £2,426               | £1,900            | £2,757             |  |  |
| PM transport<br>average     | £48,517              | £37,987           | £55,133            |  |  |
| PM transport urban<br>large | £70,351              | £55,081           | £79,944            |  |  |
| PM rural                    | £15,041              | £11,776           | £17,091            |  |  |

Source: IGCB/Defra, 2011

### **Costs of air quality in context**

### **RICARDO-AEA**

Comparing costs of transport (congestion) in urban areas in England with other issues



Source: The Cabinet Office, 2009

|  | 0 | Ricardo-AEA in Confidence |  |  |  |
|--|---|---------------------------|--|--|--|
|--|---|---------------------------|--|--|--|

© Ricardo-AEA Ltd

### Public health and air quality

- Health and Social Care Act 2012
  - Public health responsibilities pass back to local authorities (Tier 1)
  - Directors of Public Health
  - Health and wellbeing boards
- Public Health Outcomes Framework (PHOF)
  - Fraction of mortality attributable to particulate air pollution (proportion, %)
  - Calculated by DoH, based on modelled PM<sub>2.5</sub> concentrations
  - Ranges from 4% in rural areas to 8% in urban areas

### Conclusions

- Air pollution remains a key public health issue
- Transport, especially diesel vehicles, is a major cause of this pollution
- Air pollution levels have remained stubbornly high despite tightening regulations
- A key cause is the failure Euro standards for diesel vehicles to perform in urban driving conditions
- This is linked with an increasing 'dieselisation' of the car fleet driven by fuel efficiency and the climate change agenda
- There is also a potential conflict in air quality and public health policy
  - LAQM driven by NO<sub>2</sub> compliance
  - Public health driven by PM<sub>2.5</sub> exposure
- However
  - Regulations are reducing PM emissions
  - There are also strong synergies between air quality solutions and other public health issues in the form of 'active' travel



### **Guy Hitchcock**

Ricardo-AEA Ltd The Gemini Building Fermi Avenue Harwell, Didcot, OX11 0QR

**T:** 01235 753327

E: Guy.hitchcock@ricardo-aea.com

W: www.ricardo-aea.com

www.ricardo-aea.com

© Ricardo-AEA Ltd